Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Global modeling of aerosol‐particle number and size is important for understanding aerosol effects on Earth's climate and air quality. Fine‐resolution global models are desirable for representing nonlinear aerosol‐microphysical processes, their nonlinear interactions with dynamics and chemistry, and spatial heterogeneity. However, aerosol‐microphysical simulations are computationally demanding, which can limit the achievable global horizontal resolution. Here, we present the first coupling of the TwO‐Moment Aerosol Sectional (TOMAS) microphysics scheme with the High‐Performance configuration of the GEOS‐Chem model of atmospheric composition (GCHP), a coupling termed GCHP‐TOMAS. GCHP's architecture allows massively parallel GCHP‐TOMAS simulations including on the cloud, using hundreds of computing cores, faster runtimes, more memory, and finer global horizontal resolution (e.g., 25 km × 25 km, 7.8 × 105model columns) versus the previous single‐node capability of GEOS‐Chem‐TOMAS (tens of cores, 200 km × 250 km, 1.3 × 104model columns). GCHP‐TOMAS runtimes have near‐ideal scalability with computing‐core number. Simulated global‐mean number concentrations increase (dominated by free‐tropospheric over‐ocean sub‐10‐nm‐diameter particles) toward finer GCHP‐TOMAS horizontal resolution. Increasing the horizontal resolution from 200 km × 200–50 km × 50 km increases the global monthly mean free‐tropospheric total particle number by 18.5%, and over‐ocean sub‐10‐nm‐diameter particles by 39.8% at 4‐km altitude. With a cascade of contributing factors, free‐tropospheric particle‐precursor concentrations increase (32.6% at 4‐km altitude) with resolution, promoting new‐particle formation and growth that outweigh coagulation changes. These nonlinear effects have the potential to revise current understanding of processes controlling global aerosol number and aerosol impacts on Earth's climate and air quality.more » « less
- 
            Abstract. Accurate representation of the hourly variation in the NO2-column-to-surface relationship is essential for interpreting geostationary observations of NO2 columns. Previous research indicated inconsistencies in this hourly variation. This study employs the high-performance configuration of the GEOS-Chem model (GCHP) to analyze daytime hourly NO2 total columns and surface concentrations during summer. We use measurements from globally distributed Pandora sun photometers and aircraft observations over the United States. We correct Pandora total NO2 vertical columns for (1) hourly variations in effective temperature driven by vertically resolved contributions to the total column and (2) changes in local solar time along the Pandora line of sight. These corrections increase the total NO2 columns by 5–6 × 1014 molec. cm−2 at 09:00 and 18:00 across all sites. Fine-scale simulations from GHCP (∼12 km) reduce the normalized bias (NB) against Pandora total NO2 columns from 19 % to 10 % and against aircraft measurements from 25 % to 13 % in Maryland, Texas, and Colorado. Similar reductions are observed in NO2 columns over the eastern US (17 % to 9 %), the western US (22 % to 14 %), Europe (24 % to 15 %), and Asia (29 % to 21 %) when compared to 55 km simulations. Our analysis attributes the weaker hourly variability in the total NO2 column to (1) hourly variations in column effective temperature, (2) local solar time changes along the Pandora line of sight, and (3) differences in hourly NO2 variability from different atmospheric layers, with the lowest 500 m exhibiting greater variability, while the dominant residual column above 500 m exhibits weaker variability.more » « less
- 
            null (Ed.)The recent development of Robot-Assisted Minimally Invasive Surgery (RAMIS) has brought much benefit to ease the performance of complex Minimally Invasive Surgery (MIS) tasks and lead to more clinical outcomes. Compared to direct master-slave manipulation, semi-autonomous control for the surgical robot can enhance the efficiency of the operation, particularly for repetitive tasks. However, operating in a highly dynamic in-vivo environment is complex. Supervisory control functions should be included to ensure flexibility and safety during the autonomous control phase. This paper presents a haptic rendering interface to enable supervised semi-autonomous control for a surgical robot. Bayesian optimization is used to tune user-specific parameters during the surgical training process. User studies were conducted on a customized simulator for validation. Detailed comparisons are made between with and without the supervised semi-autonomous control mode in terms of the number of clutching events, task completion time, master robot end-effector trajectory and average control speed of the slave robot. The effectiveness of the Bayesian optimization is also evaluated, demonstrating that the optimized parameters can significantly improve users' performance. Results indicate that the proposed control method can reduce the operator's workload and enhance operation efficiency.more » « less
- 
            Exploration of photovoltaic materials has received enormous interest for a wide range of both fundamental and applied research. Therefore, in this work, we identify a CsSi compound with a Zintl phase as a promising candidate for photovoltaic material by using a global structure prediction method. Electronic structure calculations indicate that this phase possesses a quasi-direct band gap of 1.45 eV, suggesting that its optical properties could be superior to those of diamond-Si for capturing sunlight from the visible to the ultraviolet range. In addition, a novel silicon allotrope is obtained by removing Cs atoms from this CsSi compound. The superconducting critical temperature ( T c ) of this phase was estimated to be of 9 K in terms of a substantial density of states at the Fermi level. Our findings represent a new promising CsSi material for photovoltaic applications, as well as a potential precursor of a superconducting silicon allotrope.more » « less
- 
            null (Ed.)The world was unprepared for the COVID-19 pandemic, and recovery is likely to be a long process. Robots have long been heralded to take on dangerous, dull, and dirty jobs, often in environments that are unsuitable for humans. Could robots be used to fight future pandemics? We review the fundamental requirements for robotics for infectious disease management and outline how robotic technologies can be used in different scenarios, including disease prevention and monitoring, clinical care, laboratory automation, logistics, and maintenance of socioeconomic activities. We also address some of the open challenges for developing advanced robots that are application oriented, reliable, safe, and rapidly deployable when needed. Last, we look at the ethical use of robots and call for globally sustained efforts in order for robots to be ready for future outbreaks.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
